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1. Full Sampling Algorithm

Define the vector of observations Y = {y1(s1, d11), . . . , y1(s1, d1C1), . . . , yn(sn, dn1),. . . , yn(sn, dnCn)}′

to be the (N ×1) vector of measurements across the n observed curves, where N =
∑n

i=1Ci.

Likewise define

G =



1 g1(s1) g2(s1) · · · gK(s1)

...
...

...
...

1 g1(s1) g2(s1) · · · gK(s1)

...
...

...
...

1 g1(sn) g2(sn) · · · gK(sn)

...
...

...
...

1 g1(sn) g2(sn) · · · gK(sn)



,

to be an (N × K + 1) matrix, where each row corresponds to the loadings for observation

yi(si, dic). Let

F =



f0(d11) f1(d11) · · · fK(d11)

...
...

...

f0(d1C1) f1(d1C1) · · · fK(d1C1)

...
...

...

f0(dn1) f1(dn1) · · · fK(dn1)

...
...

...

f0(dnCn) f1(dnCn) · · · fK(dnCn)



,

be an (N ×K + 1) matrix, where each row represents the basis functions evaluated at dic.

Using these definitions, the model is

Y =

(
G ◦ F

)
J ′ + ε, (1)

where ◦ is the Schur product, J = (1, 1, . . . , 1) is a K + 1 row vector, and ε = (ε11, . . . , εiC1 ,

. . . , εn1, . . . , εnCn)′ is the (N × 1) vector of error terms.

Let D = {d∗r}Rr=1 be the set of R uniquely observed inputs across all observations in D,
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and define If to be an (N×R) matrix where the rows corresponds to each element in Y. For

each row in If , all entries are set to zero except at column r. This entry is set to one, and

it corresponds to the observation yi(si, dic) such that d∗r = dic. Likewise, define the matrix

Ig to be an (N × n) matrix. For each observation i, each entry of each column is set to zero

except column i, which is set to one.

Sample from the posterior in a series of Gibbs and Metropolis within Gibbs steps as follows:

(1) For each k, 0 6 k 6 K , letting Y ∗ = Y − (G−k ◦ F−k)J ′−k, where G−k, F−k, and J−k

are G, F and J without column k, sample fk ∼ N(M,V ) at {d∗r}Rr=1. Here

V = Σk(τG ′GΣk + I)−1,

M = V (τG ′Y ∗),

were Σk is the (R × R) covariance function constructed from σf
k (·, ·) and I is an R × R

identity matrix. Further, G is an (N × R) matrix defined as Gk � If , where � takes

the Schur product of the column vector Gk to each column in If resulting in a (N ×R)

matrix.

(2) For each k, 1 6 k 6 K and letting Y ∗ = Y − (G−k ◦ F−k)J ′−k, sample gk ∼ N(M,V ) at

{si}ni=1. Here

V = Σk(τF ′FΣk + I)−1,

M = V (τF ′Y ∗),

where Σk is the (n× n) covariance matrix formed from σg
k(·, ·), F is an (N × n) matrix

defined to be (FJ ′)� Ig, and I is the n× n identity matrix.

(3) Sample φ ∼ Ga(c, d), where

c = K
n

2
+ a1,

d =

[ K∑
m=1

( m∏
l=1

δj

)
G
′

mΣmGm

]
+ 1,
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Gm is a column vector from columnm ofG, and Σi is the matrix formed from exp(−θm||s−

s′||2)

(4) For each k sample δk ∼ Ga(c, d), where

c = (K − k + 1)
n

2
+ a1,

d =

[ K∑
m=k

, φ

( i∏
l=1,l 6=k

δl

)
G
′

mΣmGm

]
+ 1

Gm is a column vector from column m of G, Σi is the matrix formed from exp(−θi||s−

s′||2), and

(∏1
l=1,l 6=1 δj

)
= 1.

(5) For each k, 0 6 k 6 K , sample ωk using a Metropolis-Hastings step. Sample δk ∼

N(0, a); let ω∗k = exp[log(ωk) + δk], and construct the covariance matrices Σ∗k and Σk

from ω∗k and ωk respectively. Letting

`∗ = −1

2

{
f ′kΣ∗kfk + log(|Σ∗k|)

}
+ r(ω∗k) + q(ω∗k → ωk),

and

` = −1

2

{
f ′kΣkfk + log(|Σk|)

}
+ r(ωk) + q(ωk → ω∗k), (2)

where r(·) and q(·) are the log probability density functions for the prior and proposal

distributions respectively. Accept the new proposal ω∗k with probability min[1, exp(`∗ −

`)]. Note in the case of the sampling algorithm used in the manuscript, q(s → t) is

the log probability density function of a log-Gaussian distribution with µ = log(s) and

σ2 = 0.15.

(6) For each k, 1 6 k 6 K , sample θk using a Metropolis step. Sample θk ∼ DiscreteUniform(A)

a discrete uniform distribution over the set A, and construct the covariance matrices Σ∗k

and Σk from θ∗k and θk respectively. Letting

`∗ = −1

2

{
g′kΣ∗kgk + log(|Σ∗k|)

}
,

and

` = −1

2

{
g′kΣkgk + log(|Σk|)

}
, (3)
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Accept the new proposal θ∗k with probability min[1, exp(`∗ − `)].

(7) For τ, let Λ = G ◦ F and set

A =
n

2
+
ν

2
, (4)

B =
(Y − Λ)′(Y − Λ)

2
+
ν

2
, (5)

sampling τ from Ga(A,B), where ν = 2 in the manuscript.

The algorithm is written in the R programming language (R Core Team, 2015) using

the Rcpp C++ extensions (Eddelbuettel, 2013) and the RcppArmadillo (Eddelbuettel and

Sanderson, 2014) linear algebra extensions. All code is available as a supplement.

To start the MCMC sampler, the model parameters are initialized as follows: The

{fk}Kk=0 are initialized to zero across D; φ as well as {δk}Kk=1 are sampled from their priors.

The covariance kernels width parameters initialized at a fixed value, and the {gk}Kk=1 are

drawn from a N(0, 1) distribution. All of the {fk}Kk=0 are initialized to zero as initializing

them from the prior may give models with very low posterior probability causing the

algorithm to fall into numerical issues before the MCMC sampler can reach the regions of

high posterior probability. To test the speed of convergence of the algorithm, the model

was started at different locations than those above. In all cases, the model converged

to the same posterior within 500 iterations. Additionally, for estimates of h(s, d) the

effective sample size varied across d from 20 in 100 samples to 95 in 100 samples, with

the median effective sample size being near 60 per 100 samples.

When the number of unique observations is small, it is possible to develop a block

Gibbs sampler for all of the {fk}Kk=0 and {gk}Kk=1. In large problems, this requires

the inversion of a large matrix offsetting the benefits of the increased computational

efficiency.
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1.1 Predictive Inference

The posterior predictive distribution of n∗ unobserved cross sections of h(s, d) at S̀ =

{s̀1, . . . , s̀n∗} is estimated through MCMC. Let the vector gk = (gk(s1), . . . , gk(sn))′ be

observed at S = (s1, . . . , sn),′ with g̀k = (gk(s̀1), . . . , gk(s̀n∗))being of interest; gk and g̀k

are jointly distributed as

 gk

g̀k

 ∼ N

0,

 Σg
k(S, S) Σg

k(S, S̀)

Σg
k(S̀, S) Σg

k(S̀, S̀)


 .

Here Σg
k(S, S), Σg

k(S̀, S̀), Σg
k(S̀, S) and Σg

k(S, S̀) represent covariance matrices given S, S̀ and

σg
k(·, ·). Using properties of the multivariate normal distribution, conditionally on gk

g̀k | gk ∼N
[
Σg

k(S̀, S)Σg
k(S, S)−1gk,Σ

g
k(S̀, S̀)

− Σg
k(S̀, S)Σg

k(S, S)−1Σg
k(S, S̀)

]
.

For each iteration, this expression is used to draw {g̀1, . . . , g̀K}. Given this draw, as well as

{f0, . . . , fK} which represents f0(d), f1(d) etc., evaluated at D = {d∗r}Rr=1, one can estimate

the posterior predicted distribution of h(S̀, D). If new D̀ are of interest, the same technique

can be applied to estimating {f̀0, . . . , f̀K}. These values can be used with {g̀k}Kk=1 to provide

estimates for h(S̀, D̀).

2. Additional Data Example Tests

The method was also compared to standard QSAR approaches, which model a single data

point. Similar to the standard QSAR methodology, a model was fit to each data-set i and

the response associated with a given dose was computed to be observation yi. This value was

then used in the model

yi = x(si) + εi,
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where x(si) is a Gaussian process with squared exponential covariance kernel. The model was

fit on the same 669 observations in the training set and predictions were made of the response

at that dose. Both this QSAR approach as well as the adaptive tensor product approach were

compared to the hold out samples using the correlation coefficient, a standard practice in the

QSAR literature. For the dose of 20µM the standard QSAR approach had a correlation of

0.42 as compared to the co-mixture approaches’ correlation of 0.48. For the dose of 100µM

a similar 0.06 increase was seen, and, when observations that have a chemical within the

training set defined as ‘close’ (i.e., a relative distance between two chemicals less than 2.2),

this improvement in the correlation coefficient is almost 0.1 (i.e, 0.5 compared to 0.6). This

indicates that one sees 10% to 20% improvements in the correlation coefficient using the

proposed approach.
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